Showing posts with label Universal_design. Show all posts
Showing posts with label Universal_design. Show all posts

Friday, October 10, 2014

A Review of "How to Differentiate Instruction in Mixed Ability Classrooms"

 Carol Ann Tomlinson's book, How to Differentiate Instruction in Mixed Ability Classrooms, was a brief introduction to differentiation. I read this book in order to improve my asynchronous flipped class. As I started to let students work at their own pace a couple of years ago, I immediately understood other accommodations can and should be made in order to meet the needs of my students. I read the book in the hopes of learning some tools of the differentiation trade.

Overall, the book was useful. Initially, I was disappointed because I already knew several of the techniques mentioned; I was hoping to pick up some more ideas. I'm already using tools like cubing, choice boards and tiered assignments. However, after greater reflection, I'm grateful for reading this book because I now have a better understanding of the guiding principles of differentiation and picked up a few ideas. Some of the ideas that I plan to institute as a result of the book are the following:
  • Challenge leveling: in problem sets and beyond the course learning opportunities.
  • Choices in learning materials: textbooks, videos, online articles, simulations, etc. 
  • Compacting: students who demonstrate prior mastery of a concept can "test" out of the unit.
It was validating to read that some of the strategies I already decided to institute were considered effective ways to differentiate. For example, I am holding all students accountable to be able to apply their learning but exceptional students will be allowed to demonstrate learning at a higher level by creating, evaluating and analyzing learning materials. These higher order products are organized in think-tac-toe boards, choice boards, 2:5:8 boards, etc. Another point of validation was the idea that everything does not have to be graded. It's okay for students to practice applying skills without the specter of a grade looming. It's also helpful to know that my approach of starting small and adding more opportunities for differentiation is appropriate. 

The greatest takeaway from the book was the cognitive framework for differentiation. Rather than gaining a random collection of tools, I have better insight into the paradigm shift, which will equip me with the ability to develop my own tools. For example, there are three major ways to differentiate - by readiness, interest and learning profile. I've tended to focus on readiness and interest. It's easier to differentiate according to ability (readiness) and interest by offering choices at harder and easier degrees of difficulty and allow some freedom in the details and topics of projects. It is much harder to tailor intervention and activities based on individual student learning styles or profiles. That will take a better understanding of learning profiles and the type of lessons that will cater to the various styles in my classes. Looks like I have more research to do. 

The other major insight is there are three major things one can differentiate: content, process and product. Again, I've favored some of these more than others. It's easier to differentiate student products because projects can be broad enough to allow students to decide which modality to use - a report, presentation, video, essay, photo journal, story, etc. In some ways, differentiating content can also be straightforward. I have already offered optional topics for students to learn. Some students will have an opportunity to solve dihybrid Punnett Squares or sex linked problems, while other students will only handle basic genetics problems. In addition, students are allowed to learn the content at their own pace. The most difficult, or time consuming, part of differentiating content is curating a library of varied resources that can make the content accessible to all students. I would love to create an iBook that some students can choose to read, rather than relying on watching the videos I make. 

Another piece is differentiating process. These are the sense making activities that help students process or understand the material. Right now, I don't have many options for students to learn and process the material. Students may complete the sense making activities at their own pace and even have the freedom to pick and choose how much of the activity to complete; however, they do not have freedom to choose WHICH activities to complete. They all pretty much have to do a problem set, lab and online discussion for a typical learning cycle. I'd like to give students a choice, or make the choice, about the nature of the sense making activity. 

The neat thing about differentiating by readiness, interest and learning profile and differentiating content, process and product, is there are a number of possible techniques in a given unit. In one learning cycle, I may differentiate the content by interest but keep the other variables the same. In a different learning cycle, perhaps I may allow students to submit different products according to their learning profile. The combinations are plenty and can be tailored to the particular topic and combination of students in my class. 

Friday, November 8, 2013

The Flip Class as a Vehicle to Universal Design for Learning: Week 9 reflections

Successes:

I received a wonderful letter from a parent. It was truly touching. I won't quote it here but I will explain the content. It was the parent of one of my exceptional students who has consistently worked ahead. The parent thanked me for allowing the student to work at his own pace and shared that this was the first time this student actually felt a science or math course allowed him to work at his own level. Now of course I'm sure that there are/were parents who could say something negative about the flipped class, so I won't overreach here. But I am glad that one of my main motivators to make the switch is actually happening. I do have a number of exceptional students who are ahead of the pace of the course and that number increases as time passes. If I stayed with the traditional model or even a synchronous flipped model, those students would still be kept hostage by everyone else's pace. They would never know what it felt like to get an education specifically geared to their them, rather than to the middle of the class.


I'm reminded of the Universal Design for Learning model. This model is inspired by a similar mode of architecture wherein the building is designed for the extremes rather than the middle. For example, if you build 7 foot doorways, everyone can fit through without ducking their heads. If you have wheelchair ramps at every entrance and exit, then everyone can enter and exit the building. The opposite approach would have doorways the same as the average height of people or only a few wheelchair accessible entrances and exits because most people can walk. If you design for the extremes, then everyone benefits.


The same approach can be done for education. If you design education by keeping in mind the extremes, those who are exceptional and those who have special needs, then you can reach all students. When I designed my flipped class, I kept in mind the strongest students I've ever had and the other extreme. I tried to design the course to meet those extremes, in order to reach all students. The traditional model is designed around the middle of the pack and doesn't do much for the most exceptional or those who struggle the most.


How do I meet the needs of the extremes?

1) First, by having my lectures on video, students can view the content on demand, rewind, pause or fast forward. They can watch the video several times. This really helps those who struggle the most because they typically need to hear and see things several times to get it. This helps the exceptional students because they can view the video once and move on and not be slowed down by the students who have questions or those who need to hear content repeated.


2) The first question I get from colleagues is what happens when a student has a question when they watch the video, especially at home. My students are required to complete a video form after/while watching a video. Part of the form is a required question. Students send their questions to me and I can respond, many times before they come to class. This works for students who struggle because they can ask any question without fear of asking a "dumb" question in front of peers. I can reply with an email or even plan to meet with the student during the next class. The exceptional student gets to ask a question that goes beyond the scope of the course and I can answer it without fear of confusing the students who might not even understand the question.


3) Asynchronous learning cycles further support individualized learning. Weaker students can slow down and work at their pace, while exceptional students can work ahead. The obvious implications are that some students will not finish the entire course, while others will learn content beyond the scope of the course. The former implication was hard for me to accept at first but when I remembered that the weakest students didn't actually learn all of the content in the traditional model anyway, I felt better about the decision. We rush all students ahead at a predetermined rate, usually equal to the pace of the middle students, without really considering that the weaker students haven't learned the earlier material. In a cumulative course, this approach is counterproductive. Either way, the weakest students will not learn as much in a year as the other students. At least in the asynchronous model, they have a chance of mastering some content and feeling good about really learning.


Adjustments:

I have a weird policy regarding lab reports that I'm rethinking. Since the first lab assignments, I haven't let students work on their lab reports during class time. The major reason is that the reports take up too much time; if we stopped going through the learning cycle for lab report writing, we would get through a fraction of the curriculum. My workaround has been to allow students to record data and perform calculations in class but write up their reports and make graphs at home; in addition, students who complete the mandatory learning cycle tasks for the week could also use the remainder of the week to either work ahead or work on the lab reports. So far, this is the best compromise that I've figured out and still trying to think of an alternative solution.


Speaking of labs, running an asynchronous course makes it difficult to run labs that require the entire class. So far, I've managed to share last year's data to allow faster students to complete their writeup without waiting for other classmates. Once all of the students have nearly caught up, the entire class set-up the experiment and collect data to be used for next year. What I would like to do instead is let individual students or small groups set up the lab as soon as their ready, then share last year's data with them. This way they are setting up the lab as soon as it is relevant; ahead students won't have to set up a lab they already wrote a lab report for! I still haven't figured out a way to avoid using last year's data in an asynchronous course because I don't want the quicker students to wait too long and don't want the slower students to arbitrarily set up a lab when they haven't even learned the prerequisite material.